Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Front Immunol ; 13: 933347, 2022.
Article in English | MEDLINE | ID: covidwho-2311143

ABSTRACT

Intramuscularly administered vaccines stimulate robust serum neutralizing antibodies, yet they are often less competent in eliciting sustainable "sterilizing immunity" at the mucosal level. Our study uncovers a strong temporary neutralizing mucosal component of immunity, emanating from intramuscular administration of an mRNA vaccine. We show that saliva of BNT162b2 vaccinees contains temporary IgA targeting the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus-2 spike protein and demonstrate that these IgAs mediate neutralization. RBD-targeting IgAs were found to associate with the secretory component, indicating their bona fide transcytotic origin and their polymeric multivalent nature. The mechanistic understanding of the high neutralizing activity provided by mucosal IgA, acting at the first line of defense, will advance vaccination design and surveillance principles and may point to novel treatment approaches and new routes of vaccine administration and boosting.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , RNA, Messenger , Immunoglobulin A
2.
Clin Infect Dis ; 2022 Jun 19.
Article in English | MEDLINE | ID: covidwho-2235027

ABSTRACT

BACKGROUND: SARS-CoV-2 infection during early infancy can result in severe disease. We evaluated the durability of maternally-derived anti-SARS-CoV-2 antibodies in infants and its relation to antenatal vaccination timing. METHODS: Sera were prospectively collected at birth and 3 months after delivery from mother-infant pairs following antenatal BNT162b2 vaccination. SARS-CoV-2 receptor binding domain (RBD)-specific IgG levels and neutralizing activity were evaluated. RESULTS: 56 mother-infant pairs were included: 15 (26.8%) were vaccinated in the 1st trimester, 16 (28.6%) in the 2nd trimester, and 25 (44.6%) in the 3rd trimester.At the time of delivery, all neonates were positive for anti-RBD-specific IgG with a median concentration of 4046 [IQR 2446-7896] AU/mL, with the highest concentration found after 3rd trimester vaccination (median 6763 [IQR 3857-12561] AU/mL). At 3 months after delivery, anti RBD-specific IgG levels in infants significantly waned with a median concentration of 545 [IQR 344-810] AU/mL (P < 0.001). The half-life of anti-RBD-specific IgG was 66 days among mothers and 30 days among infants. While at the time of delivery, all neonates had detectable neutralizing activity regardless of gestational age at vaccination, at 3-months of age, a higher proportion of infants born to mothers vaccinated in 3rd trimester had persistent neutralizing activity as compared to those born to mothers vaccinated in 2nd trimester. CONCLUSIONS: Maternal vaccination leads to efficient transplacental antibody transfer, with persistent anti-SARS-CoV-2 antibodies detected at 3 months of age in all infants. The observed effect of antenatal immunization timing on the kinetics of maternally-derived antibodies may have implications for SARS-CoV-2 vaccination strategies.

3.
JCI Insight ; 8(1)2023 01 10.
Article in English | MEDLINE | ID: covidwho-2194475

ABSTRACT

BACKGROUND: To minimize COVID-19 pandemic burden and spread, 3-dose vaccination campaigns commenced worldwide. Since patients who are pregnant are at increased risk for severe disease, they were recently included in that policy, despite the lack of available evidence regarding the impact of a third boosting dose during pregnancy, underscoring the urgent need for relevant data. We aimed to characterize the effect of the third boosting dose of mRNA Pfizer BNT162b2 vaccine in pregnancy. METHODS: We performed a prospective cohort study of anti-SARS-CoV-2 antibody titers (n = 213) upon delivery in maternal and cord blood of naive fully vaccinated parturients who received a third dose (n = 86) as compared with 2-dose recipients (n = 127). RESULTS: We found a robust surge in maternal and cord blood levels of anti-SARS-CoV-2 titers at the time of delivery, when comparing pregnancies in which the mother received a third boosting dose with 2-dose recipients. The effect of the third boosting dose remained significant when controlling for the trimester of last exposure, suggesting additive immunity extends beyond that obtained after the second dose. Milder side effects were reported following the third dose, as compared with the second vaccine dose, among the fully vaccinated group. CONCLUSION: The third boosting dose of mRNA Pfizer BNT162b2 vaccine augmented maternal and neonatal immunity with mild side effects. These data provide evidence to bolster clinical and public health guidance, reassure patients, and increase vaccine uptake among patients who are pregnant. FUNDING: Israel Science Foundation KillCorona grant 3777/19; Research grant from the "Ofek" Program of the Hadassah Medical Center.


Subject(s)
COVID-19 , SARS-CoV-2 , Infant, Newborn , Female , Pregnancy , Humans , COVID-19/prevention & control , BNT162 Vaccine , Immunity, Humoral , Pandemics , Prospective Studies , Mothers , RNA, Messenger
4.
Clin Infect Dis ; 75(1): e603-e610, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-2017834

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) during pregnancy and early infancy can result in severe disease. Evaluating the effect of gestational age at the time of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination on maternal antibody levels and transplacental antibody transfer has important implications for maternal care and vaccination strategies. METHODS: Maternal and cord blood sera were collected from mother-newborn dyads (n = 402), following term delivery after antenatal 2-dose SARS-CoV-2 BNT162b2 mRNA vaccination. SARS-CoV-2 spike protein (S) and receptor binding domain (RBD)-specific IgG levels were evaluated in the samples collected. RESULTS: Median anti-S and anti-RBD-specific IgG levels in maternal sera at the time of delivery were lowest following first-trimester vaccination (n = 90; anti-S IgG: 76 AU/mL; anti-RBD-specific IgG: 478 AU/mL), intermediate in those vaccinated in the second trimester (n = 124; anti-S IgG: 126 AU/mL; anti-RBD-specific IgG: 1263 AU/mL), and highest after third-trimester vaccination (n = 188; anti-S IgG: 240 AU/mL; anti-RBD-specific IgG: 5855 AU/mL). Antibody levels in neonatal sera followed a similar pattern and were lowest following antenatal vaccination in the first trimester (anti-S IgG: 126 AU/mL; anti-RBD-specific IgG: 1140 AU/mL). In a subgroup of parturients vaccinated in the first trimester (n = 30), a third booster dose was associated with significantly higher maternal and neonatal antibody levels. CONCLUSIONS: These results suggest a considerable antibody waning throughout pregnancy in those vaccinated at early gestation. The observed boosting effect of a third vaccine dose hints at its potential benefit in those who completed the 2-dose vaccine series at early pregnancy or before conception. The impact of antenatal immunization timing on SARS-CoV-2 transplacental antibody transfer may influence neonatal seroprotection.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Viral Vaccines , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Female , Gestational Age , Humans , Immunoglobulin G , Infant, Newborn , Pregnancy , Pregnancy Complications, Infectious/prevention & control , RNA, Messenger , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
5.
Am J Obstet Gynecol ; 227(3): 486.e1-486.e10, 2022 09.
Article in English | MEDLINE | ID: covidwho-1959260

ABSTRACT

BACKGROUND: Post-COVID-19 vaccine boosting is a potent tool in the ongoing pandemic. Relevant data regarding this approach during pregnancy are lacking, which affects vaccination policy guidance, public acceptance, and vaccine uptake during pregnancy. We aimed to investigate the dynamics of anti-SARS-CoV-2 antibody levels following SARS-CoV-2 infection during pregnancy and to characterize the effect of a single postinfection vaccine booster dose on the anti-SARS-CoV-2 antibody levels in parturients in comparison with the levels in naïve vaccinated and convalescent, nonboosted parturients. STUDY DESIGN: Serum samples prospectively collected from parturients and umbilical cords at delivery at our university-affiliated urban medical center in Jerusalem, Israel, from May to October 2021, were selected and analyzed in a case-control manner. Study groups comprised the following participants: a consecutive sample of parturients with a polymerase chain reaction-confirmed history of COVID-19 during any stage of pregnancy; and comparison groups selected according to time of exposure comprising (1) convalescent, nonboosted parturients with polymerase chain reaction-confirmed COVID-19; (2) convalescent parturients with polymerase chain reaction-confirmed COVID-19 who received a single booster dose of the BNT162b2 messenger RNA vaccine; and (3) infection-naïve, fully vaccinated parturients who received 2 doses of the BNT162b2 messenger RNA vaccine. Outcomes that were determined included maternal and umbilical cord blood anti-SARS-CoV-2 antibody levels detected at delivery, the reported side effects, and pregnancy outcomes. RESULTS: A total of 228 parturients aged 18 to 45 years were included. Of those, samples from 64 were studied to characterize the titer dynamics following COVID-19 at all stages of pregnancy. The boosting effect was determined by comparing (1) convalescent (n=54), (2) boosted convalescent (n=60), and (3) naïve, fully vaccinated (n=114) parturients. Anti-SARS-CoV-2 antibody levels detected on delivery showed a gradual and significant decline over time from infection to delivery (r=0.4371; P=.0003). Of the gravidae infected during the first trimester, 34.6% (9/26) tested negative at delivery, compared with 9.1% (3/33) of those infected during the second trimester (P=.023). Significantly higher anti-SARS-CoV-2 antibody levels were observed among boosted convalescent than among nonboosted convalescent (17.6-fold; P<.001) and naïve vaccinated parturients (3.2-fold; P<.001). Similar patterns were observed in umbilical cord blood. Side effects in convalescent gravidae resembled those in previous reports of mild symptoms following COVID-19 vaccination during pregnancy. CONCLUSION: Postinfection maternal humoral immunity wanes during pregnancy, leading to low or undetectable protective titers for a marked proportion of patients. A single boosting dose of the BNT162b2 messenger RNA vaccine induced a robust increase in protective titers for both the mother and newborn with moderate reported side effects.


Subject(s)
COVID-19 Vaccines , COVID-19 , Viral Vaccines , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Humans , Immunity, Humoral , Infant, Newborn , RNA, Messenger , SARS-CoV-2 , Vaccines, Synthetic , Viral Vaccines/adverse effects , mRNA Vaccines
6.
Viruses ; 14(7)2022 07 21.
Article in English | MEDLINE | ID: covidwho-1957450

ABSTRACT

SARS-CoV-2 Omicron variant has been characterized by decreased clinical severity, raising the question of whether early variant-specific interactions within the mucosal surfaces of the respiratory tract could mediate its attenuated pathogenicity. Here, we employed ex vivo infection of native human nasal and lung tissues to investigate the local-mucosal susceptibility and innate immune response to Omicron compared to Delta and earlier SARS-CoV-2 variants of concern (VOC). We show that the replication of Omicron in lung tissues is highly restricted compared to other VOC, whereas it remains relatively unchanged in nasal tissues. Mechanistically, Omicron induced a much stronger antiviral interferon response in infected tissues compared to Delta and earlier VOC-a difference, which was most striking in the lung tissues, where the innate immune response to all other SARS-CoV-2 VOC was blunted. Notably, blocking the innate immune signaling restored Omicron replication in the lung tissues. Our data provide new insights to the reduced lung involvement and clinical severity of Omicron.


Subject(s)
COVID-19 , Interferons , Lung , COVID-19/immunology , Humans , Interferons/immunology , Lung/immunology , Lung/virology , SARS-CoV-2/physiology , Virus Replication
7.
Clin Infect Dis ; 75(11): 2023-2026, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-1927309

ABSTRACT

We evaluated the neutralization efficiency against SARS-CoV-2 Omicron variant in maternal and cord blood sera after antenatal BNT162b2 vaccination. Neutralizing antibodies against Omicron were lacking at the time of delivery after 2-dose vaccination. A third booster dose was essential in building neutralizing antibody capacity against Omicron among mothers and neonates.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Pregnancy , Infant, Newborn , Female , Humans , SARS-CoV-2/genetics , RNA, Messenger , BNT162 Vaccine , COVID-19/prevention & control , Vaccination , Antibodies, Neutralizing , Mothers , Antibodies, Viral , Pregnancy Complications, Infectious/prevention & control
8.
Microbiol Spectr ; 10(4): e0073622, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1909609

ABSTRACT

COVID-19 is caused by SARS-CoV-2, several virulent variants of which have emerged since 2019. More than 529 million people have been infected, and at least 6 million have died. Our aim was to develop a fast, accurate, low-cost method for detecting and identifying newly emerging variants of concern (VOCs) that could pose a global threat. The 341-bp DNA sequence of a specific region of the SARS-CoV-2's spike protein was amplified by a one-step PCR on RNA samples from 46 patients. The product was sequenced using next-generation sequencing (NGS). DNA sequences from seven genomes, the original Wuhan isolate and six different representative variants obtained from the GISAID website, were used as references. Complete whole-genome sequences from local isolates were also obtained from the GISAID website, and their RNA was used for comparison. We used an amplicon-based NGS method (termed VOC-NGS) for genotyping and successfully identified all 46 samples. Fifteen (32.6%) were like the original isolate. Twenty-seven were VOCs: nine (19.5%) Alpha, eight (19%) Delta, six (14%) Beta, and four (8.7%) Omicron. Two were variants of interest (VOI): one (2%) Kappa and one (2%) Zeta. Two samples were mixtures of two variants, one of Alpha and Beta and one of Alpha and Delta. The Spearman correlation between whole-genome sequencing (WGS) and VOC-NGS was significant (P < 0.001) with perfect agreement (Kappa = 0.916) for 36/38 (94.7%) samples with VOC-NGS detecting all the known VOCs. Genotyping by VOC-NGS enables rapid screening of high-throughput clinical samples that includes the identification of VOCs and mixtures of variants, at lower cost than WGS. IMPORTANCE The manuscript described SARS-Cov-2 genotyping by VOC-NGS, which presents an ideal balance of accuracy, rapidity, and cost for detecting and globally tracking VOCs and some VOI of SARS-CoV-2. A large number of clinical samples can be tested together. Rapid introduction of new mutations at a specific site of the spike protein necessitates efficient strain detection and identification to enable choice of treatment and the application of vaccination, as well as planning public health policy.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , High-Throughput Nucleotide Sequencing , Humans , Mutation , RNA , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
9.
Ann Neurol ; 91(6): 796-800, 2022 06.
Article in English | MEDLINE | ID: covidwho-1763182

ABSTRACT

The introduction of a third-dose vaccination along with new variants of concern raises questions regarding serology and T-cell responses in patients with multiple sclerosis (pwMS) treated with B-cell depletion who develop attenuated humoral response to vaccines. The aim of this study was to longitudinally evaluate humoral and cellular response to SARS-CoV-2 mRNA vaccine in ocrelizumab-treated pwMS before and following a third vaccine dose. Following the third vaccine dose, patients who are low or nonresponders following initial vaccination did not increase antibody titers. In healthy controls and ocrelizumab-treated pwMS, cellular response decreased 6 months after initial vaccination and increased significantly after the third dose. ANN NEUROL 2022;91:796-800.


Subject(s)
COVID-19 , Multiple Sclerosis , Antibodies, Monoclonal, Humanized , Antibodies, Viral , COVID-19 Vaccines/therapeutic use , Humans , Immunity , Multiple Sclerosis/drug therapy , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
11.
J Nephrol ; 35(1): 153-164, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1603821

ABSTRACT

BACKGROUND: Determining the humoral immunogenicity of tozinameran (BNT162b2) in patients requiring chronic renal replacement therapy, and its impact on COVID-19 morbidity several months after vaccination, may guide risk assessment and changes in vaccination policy. METHODS: In a prospective post-vaccination cohort study with up to 5 months follow-up we studied outpatient dialysis and kidney transplant patients and respective healthcare teams. Outcomes were anti S1/S2 antibody responses to vaccine or infection, and infection rate during follow-up. RESULTS: One hundred seventy-five dialysis patients (40% women, 65 ± 15 years), 252 kidney transplant patients (33% women, 54 ± 14 years) and 71 controls (65% women, 44 ± 14 years) were followed. Three months or longer after vaccination we detected anti S1/S2 IgG antibodies in 79% of dialysis patients, 42% of transplant recipients and 100% of controls, whereas respective rates after infection were 94%, 69% and 100%. Predictors of non-response were older age, diabetes, history of cancer, lower lymphocyte count and lower vitamin-D levels. Factors associated with lower antibody levels in dialysis patients were modality (hemodialysis vs peritoneal) and high serum ferritin levels. In transplant patients, hypertension and higher calcineurin or mTOR inhibitor drug levels were linked with lower antibody response. Vaccination was associated with fewer subsequent infections (HR 0.23, p < 0.05). Moreover, higher antibody levels (particularly above 59 AU/ml) were associated with fewer events, with a HR 0.41 for each unit increased in log10titer (p < 0.05). CONCLUSIONS: Dialysis patients, and more strikingly kidney transplant recipients, mounted reduced antibody response to COVID-19 mRNA vaccination. Lesser humoral response was associated with more infections. Measures to identify and protect non-responsive patients are required.


Subject(s)
COVID-19 , Kidney Transplantation , Aged , BNT162 Vaccine , Cohort Studies , Female , Follow-Up Studies , Humans , Male , Prospective Studies , RNA, Messenger , Renal Dialysis , SARS-CoV-2 , Vaccines, Synthetic , mRNA Vaccines
13.
Clin Infect Dis ; 73(10): 1909-1912, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1522148

ABSTRACT

Maternal and cord blood sera were collected from 20 parturients who received the BNT162b2 vaccine. All women and infants were positive for anti S- and anti-receptor binding domain antibody-specific immunoglobulin G. Cord blood antibody concentrations were correlated to maternal levels and to time since vaccination. Antenatal severe acute respiratory syndrome coronavirus 2 vaccination may provide maternal and neonatal protection.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , Female , Humans , Infant, Newborn , Pregnancy , RNA, Messenger , Vaccination
14.
J Clin Microbiol ; 60(1): e0169821, 2022 01 19.
Article in English | MEDLINE | ID: covidwho-1511413

ABSTRACT

This first pilot trial on external quality assessment (EQA) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) whole-genome sequencing, initiated by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Genomic and Molecular Diagnostics (ESGMD) and the Swiss Society for Microbiology (SSM), aims to build a framework between laboratories in order to improve pathogen surveillance sequencing. Ten samples with various viral loads were sent out to 15 clinical laboratories that had free choice of sequencing methods and bioinformatic analyses. The key aspects on which the individual centers were compared were the identification of (i) single nucleotide polymorphisms (SNPs) and indels, (ii) Pango lineages, and (iii) clusters between samples. The participating laboratories used a wide array of methods and analysis pipelines. Most were able to generate whole genomes for all samples. Genomes were sequenced to various depths (up to a 100-fold difference across centers). There was a very good consensus regarding the majority of reporting criteria, but there were a few discrepancies in lineage and cluster assignments. Additionally, there were inconsistencies in variant calling. The main reasons for discrepancies were missing data, bioinformatic choices, and interpretation of data. The pilot EQA was overall a success. It was able to show the high quality of participating laboratories and provide valuable feedback in cases where problems occurred, thereby improving the sequencing setup of laboratories. A larger follow-up EQA should, however, improve on defining the variables and format of the report. Additionally, contamination and/or minority variants should be a further aspect of assessment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Laboratories , Laboratories, Clinical , Pilot Projects
15.
Clin Microbiol Infect ; 28(3): 419-425, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1504664

ABSTRACT

OBJECTIVE: We aimed to assess the impact of early versus late third-trimester maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination on transplacental transfer and neonatal levels of SARS-CoV-2 antibodies. METHODS: Maternal and cord blood sera were collected following term delivery after antenatal SARS-CoV-2 BNT162b2 mRNA vaccination, with the first vaccine dose administered between 27 and 36 weeks of gestation. SARS-CoV-2 spike protein (S) and receptor-binding domain (RBD) -specific, IgG levels and neutralizing potency were evaluated in maternal and cord blood samples. RESULTS: The study cohort consisted of 171 parturients-median age 31 years (interquartile range (IQR) 27-35 years); median gestational age 39+5 weeks (IQR 38+5-40+4 weeks)-83 (48.5%) were immunized in early thrird-trimester (first dose at 27-31 weeks) and 88 (51.5%) were immunized in late third trimester (first dose at 32-36 weeks). All mother-infant paired sera were positive for anti S- and anti-RBD-specific IgG. Anti-RBD-specific IgG concentrations in neonatal sera were higher following early versus late third-trimester vaccination (median 9620 AU/mL (IQR 5131-15332 AU/mL) versus 6697 AU/mL (IQR 3157-14731 AU/mL), p 0.02), and were positively correlated with increasing time since vaccination (r = 0.26; p 0.001). Median antibody placental transfer ratios were increased following early versus late third-trimester immunization (anti-S ratio: 1.3 (IQR 1.1-1.6) versus 0.9 (IQR 0.6-1.1); anti-RBD-specific ratio: 2.3 (IQR 1.7-3.0) versus 0.7 (IQR 0.5-1.2), p < 0.001). Neutralizing antibodies placental transfer ratio was greater following early versus late third-trimester immunization (median 1.9 (IQR 1.7-2.5) versus 0.8 (IQR 0.5-1.1), p < 0.001), and was positively associated with longer duration from vaccination (r = 0.77; p < 0.001). CONCLUSIONS: Early compared with late third-trimester maternal SARS-CoV-2 immunization enhanced transplacental antibody transfer and increased neonatal neutralizing antibody levels. Our findings highlight that vaccination of pregnant women early in the third trimester may enhance neonatal seroprotection.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Adult , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Cohort Studies , Female , Humans , Immunoglobulin G , Infant , Infant, Newborn , Placenta , Pregnancy , Pregnancy Complications, Infectious/prevention & control , Pregnancy Trimester, Third , Prospective Studies , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
16.
JAMA Neurol ; 78(12): 1510-1514, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1432341

ABSTRACT

Importance: B-cell-depleting therapies may affect the development of a protective immune response following vaccination. Understanding the ability to develop vaccine-specific immunity to COVID-19 in patients with multiple sclerosis (MS) treated with B-cell-depleting therapy is of importance for clinical decisions. Objective: To assess SARS-CoV-2 vaccine-specific humoral and cellular responses in patients treated with ocrelizumab compared with healthy controls. Design, Setting, and Participants: This single-center study performed at Hadassah Medical Center in Jerusalem, Israel, included patients with MS treated with ocrelizumab, healthy controls, and untreated patients with MS. Vaccination occurred between December 2020 and April 2021. Participants donated blood 2 to 4 and 2 to 8 weeks after the second vaccine dose for antibody and T-cell assessments, respectively. Exposures: All participants received 2 doses of BNT162b2 vaccine (Pfizer/BioNTech) and completed the study. Main Outcomes and Measures: Proportion of patients treated with ocrelizumab with SARS-CoV-2-specific serology and/or T-cell responses following vaccination. All participants underwent SARS-CoV-2 antibody testing; 29 patients treated with ocrelizumab and 15 healthy controls had evaluation of SARS-CoV-2-specific T-cell responses. Results: Of 112 participants, 49 (43.8%) had MS and were treated with ocrelizumab (33 [67.3%] female; mean [SD] age, 47.9 [13.3] years), 23 (20.5%) had MS and were not treated with disease-modifying therapies (18 [78.3%] female; mean [SD] age, 49 [13.4] years), and 40 (35.7%) were healthy controls (25 [62.5%] female; mean [SD] age, 45.3 [16] years). Twenty-six of 29 patients (89.7%) treated with ocrelizumab and 15 of 15 healthy controls (100%) had SARS-CoV-2-specific T cells following vaccination at similar levels (mean [SD], 15.4 [7.6] and 14.3 [6.3] spot-forming cells, respectively). Mean antibody titers and positive serology rate were lower in the group of patients treated with ocrelizumab (mean [SD] antibody titers and positive serology rate, 26.2 [49.2] and 376.5 [907.6] AU/mL; 10 of 40 [25%] and 20 of 49 [40.8%] for S1/S2 and receptor-binding domain, respectively) compared with healthy controls (mean [SD] antibody titers and positive serology rate, 283 [100] and 12 712 [9114] AU/mL; 100% S1/S2 and receptor-binding domain) and untreated patients (mean [SD] antibody titers and positive serology rate, 288.3 [113.8] and 10 877 [9476] AU/mL; 100% S1/S2 and receptor-binding domain), with positive association to time from ocrelizumab infusion (S1/S2: r = 0.7, P < .001; receptor-binding domain: r = 0.4, P = .04). Conclusion and Relevance: In this study, patients with MS who were treated with ocrelizumab generated comparable SARS-CoV-2-specific T-cell responses with healthy controls and had lower antibody response following vaccination. Given the potential role of T cells in protection from severe disease, this is reassuring and will help physicians develop consensus guidelines regarding MS treatment in the era of the COVID-19 pandemic.


Subject(s)
Antibodies, Monoclonal, Humanized/adverse effects , COVID-19 Vaccines/immunology , Immunity, Humoral/immunology , Immunologic Factors/adverse effects , Multiple Sclerosis/immunology , T-Lymphocytes/immunology , Adult , Antibodies, Monoclonal, Humanized/therapeutic use , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/prevention & control , Female , Humans , Immunologic Factors/therapeutic use , Lymphocyte Count , Male , Middle Aged , Multiple Sclerosis/drug therapy
17.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: covidwho-1349700

ABSTRACT

Atomic structures of several proteins from the coronavirus family are still partial or unavailable. A possible reason for this gap is the instability of these proteins outside of the cellular context, thereby prompting the use of in-cell approaches. In situ cross-linking and mass spectrometry (in situ CLMS) can provide information on the structures of such proteins as they occur in the intact cell. Here, we applied targeted in situ CLMS to structurally probe Nsp1, Nsp2, and nucleocapsid (N) proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and obtained cross-link sets with an average density of one cross-link per 20 residues. We then employed integrative modeling that computationally combined the cross-linking data with domain structures to determine full-length atomic models. For the Nsp2, the cross-links report on a complex topology with long-range interactions. Integrative modeling with structural prediction of individual domains by the AlphaFold2 system allowed us to generate a single consistent all-atom model of the full-length Nsp2. The model reveals three putative metal binding sites and suggests a role for Nsp2 in zinc regulation within the replication-transcription complex. For the N protein, we identified multiple intra- and interdomain cross-links. Our integrative model of the N dimer demonstrates that it can accommodate three single RNA strands simultaneously, both stereochemically and electrostatically. For the Nsp1, cross-links with the 40S ribosome were highly consistent with recent cryogenic electron microscopy structures. These results highlight the importance of cellular context for the structural probing of recalcitrant proteins and demonstrate the effectiveness of targeted in situ CLMS and integrative modeling.


Subject(s)
Models, Molecular , SARS-CoV-2/chemistry , Viral Proteins/chemistry , Cross-Linking Reagents/chemistry , HEK293 Cells , Humans , Mass Spectrometry , Protein Domains
18.
J Virol ; 95(14): e0013021, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1203943

ABSTRACT

The nasal mucosa constitutes the primary entry site for respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While the imbalanced innate immune response of end-stage coronavirus disease 2019 (COVID-19) has been extensively studied, the earliest stages of SARS-CoV-2 infection at the mucosal entry site have remained unexplored. Here, we employed SARS-CoV-2 and influenza virus infection in native multi-cell-type human nasal turbinate and lung tissues ex vivo, coupled with genome-wide transcriptional analysis, to investigate viral susceptibility and early patterns of local mucosal innate immune response in the authentic milieu of the human respiratory tract. SARS-CoV-2 productively infected the nasal turbinate tissues, predominantly targeting respiratory epithelial cells, with a rapid increase in tissue-associated viral subgenomic mRNA and secretion of infectious viral progeny. Importantly, SARS-CoV-2 infection triggered robust antiviral and inflammatory innate immune responses in the nasal mucosa. The upregulation of interferon-stimulated genes, cytokines, and chemokines, related to interferon signaling and immune-cell activation pathways, was broader than that triggered by influenza virus infection. Conversely, lung tissues exhibited a restricted innate immune response to SARS-CoV-2, with a conspicuous lack of type I and III interferon upregulation, contrasting with their vigorous innate immune response to influenza virus. Our findings reveal differential tissue-specific innate immune responses in the upper and lower respiratory tracts that are specific to SARS-CoV-2. The studies shed light on the role of the nasal mucosa in active viral transmission and immune defense, implying a window of opportunity for early interventions, whereas the restricted innate immune response in early-SARS-CoV-2-infected lung tissues could underlie the unique uncontrolled late-phase lung damage of advanced COVID-19. IMPORTANCE In order to reduce the late-phase morbidity and mortality of COVID-19, there is a need to better understand and target the earliest stages of SARS-CoV-2 infection in the human respiratory tract. Here, we have studied the initial steps of SARS-CoV-2 infection and the consequent innate immune responses within the natural multicellular complexity of human nasal mucosal and lung tissues. Comparing the global innate response patterns of nasal and lung tissues infected in parallel with SARS-CoV-2 and influenza virus, we found distinct virus-host interactions in the upper and lower respiratory tract, which could determine the outcome and unique pathogenesis of SARS-CoV-2 infection. Studies in the nasal mucosal infection model can be employed to assess the impact of viral evolutionary changes and evaluate new therapeutic and preventive measures against SARS-CoV-2 and other human respiratory pathogens.


Subject(s)
COVID-19/immunology , Immunity, Innate , Lung/immunology , Nasal Mucosa/immunology , SARS-CoV-2/immunology , Animals , COVID-19/pathology , Chlorocebus aethiops , Dogs , Humans , Influenza, Human/immunology , Influenza, Human/pathology , Lung/pathology , Madin Darby Canine Kidney Cells , Nasal Mucosa/pathology , Nasal Mucosa/virology , Organ Specificity/immunology , RNA, Messenger/immunology , RNA, Viral/immunology , Vero Cells
19.
Pediatrics ; 147(5)2021 05.
Article in English | MEDLINE | ID: covidwho-1183694

ABSTRACT

OBJECTIVES: To assess infection rates predischarge and postdischarge in breast milk-fed newborns with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive mothers who were separated postdelivery from their mothers and discharged from the hospital. Also, we aim to evaluate breastfeeding rates predischarge and postdischarge. METHODS: Nasopharyngeal swabs for SARS-CoV-2 were obtained from symptomatic and high-risk women in the delivery room. Mothers with positive SARS-CoV-2 test results were separated from the newborns. Newborns were screened within 48 hours of delivery, and anti-infectious guidelines were imparted to the mothers before discharge. Rescreening took place ≥14 days postdischarge. Data regarding SARS-CoV-2-positive household members and breastfeeding were obtained by follow-up phone calls. RESULTS: A total of 73 newborns of SARS-CoV-2-positive mothers were born in Israel during the ∼3-month period under study. Overall, 55 participated in this study. All neonates tested negative for the virus postdelivery. A total 74.5% of the neonates were fed unpasteurized expressed breast milk during the postpartum separation until discharge. Eighty-nine percent of the neonates were discharged from the hospital after their mothers were instructed in anti-infection measures. In 40% of the households, there were additional SARS-CoV-2-positive residents. A total of 85% of the newborns were breastfed postdischarge. Results for all 60% of the newborns retested for SARS-CoV-2 postdischarge were negative. CONCLUSIONS: No viral infection was identified in neonates born to and separated from their SARS-CoV-2-positive mothers at birth and subsequently fed unpasteurized breast milk. All infants breastfed at home remained SARS-CoV-2 negative. These findings may provide insights regarding the redundancy of postpartum mother-newborn separation in SARS-CoV-2-positive women and, assuming precautions are adhered to, support the safety of breast milk.


Subject(s)
Breast Feeding , COVID-19/diagnosis , COVID-19/transmission , Infectious Disease Transmission, Vertical/prevention & control , Pregnancy Complications, Infectious/diagnosis , Adult , COVID-19/prevention & control , Female , Follow-Up Studies , Humans , Infant, Newborn , Israel , Patient Isolation , Pregnancy , SARS-CoV-2
20.
Sci Transl Med ; 13(589)2021 04 14.
Article in English | MEDLINE | ID: covidwho-1096971

ABSTRACT

Pooling multiple swab samples before RNA extraction and real-time reverse transcription polymerase chain reaction (RT-PCR) analysis has been proposed as a strategy to reduce costs and increase throughput of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tests. However, reports on practical large-scale group testing for SARS-CoV-2 have been scant. Key open questions concern reduced sensitivity due to sample dilution, the rate of false positives, the actual efficiency (number of tests saved by pooling), and the impact of infection rate in the population on assay performance. Here, we report an analysis of 133,816 samples collected between April and September 2020 and tested by Dorfman pooling for the presence of SARS-CoV-2. We spared 76% of RNA extraction and RT-PCR tests, despite the frequently changing prevalence (0.5 to 6%). We observed pooling efficiency and sensitivity that exceeded theoretical predictions, which resulted from the nonrandom distribution of positive samples in pools. Overall, our findings support the use of pooling for efficient large-scale SARS-CoV-2 testing.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Humans , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL